home *** CD-ROM | disk | FTP | other *** search
- #include <LEDA/plane.h>
- #include <LEDA/d_array.h>
- #include <LEDA/graph.h>
- #include <LEDA/window.h>
-
- window W;
-
- void TRIANG(list<point> L, GRAPH<point,int>& G)
- {
- if (L.length() < 3) return;
-
- list<point> CH;
- list_item last;
-
- L.sort(); // sort points lexicographically
-
- d_array<point,node> V(nil);
-
-
-
- // initialize convex hull with first two points
-
- point p = L.pop();
- V[p] = G.new_node(p);
- CH.append(p);
-
- while (L.head() == p) L.pop();
- point q = L.pop();
- last = CH.append(q);
- V[q] = G.new_node(q);
-
- G.new_edge(V[p],V[q]);
-
-
- // scan remaining points
-
- forall(p,L)
- {
- if (p == CH[last]) continue; // multiple point
-
- node v = G.new_node(p);
-
- V[p] = v;
-
- G.new_edge(v,V[CH[last]]);
-
- // compute upper tangent (p,up)
-
- list_item up = last;
- list_item it = CH.cyclic_succ(up);
-
- while (left_turn(CH[it],CH[up],p))
- { up = it;
- it = CH.cyclic_succ(up);
- G.new_edge(v,V[CH[up]]);
- }
-
-
- // compute lower tangent (p,low)
-
- list_item low = last;
- it = CH.cyclic_pred(low);
-
- while (right_turn(CH[it],CH[low],p))
- { low = it;
- it = CH.cyclic_pred(low);
- G.new_edge(v,V[CH[low]]);
- }
-
-
- // remove all points between up and low
-
- if (up != low)
- { it = CH.cyclic_succ(low);
-
- while (it != up)
- { CH.del(it);
- it = CH.cyclic_succ(low);
- }
- }
-
- // insert new point
-
- last = CH.insert(p,low);
-
- }
-
- }
-
-
-
- main()
- {
- //window W;
- W.init(-100,100,-100);
- W.set_node_width(5);
-
- int N = 500;
-
- panel P("triangulation");
-
- P.int_item("# points",N,1,2000);
- int b1 = P.button("mouse");
- int b2 = P.button("random");
- int b3 = P.button("quit");
-
- for(;;)
- {
- list<point> L;
- point p,q;
-
- int but = P.open();
-
- W.clear();
-
- if (but == b1)
- while (W >> p)
- { W.draw_point(p,blue);
- L.append(p);
- }
-
- if (but == b2)
- for(int i = 0; i<N; i++)
- { point p(random(-90,90),random(-90,90));
- W.draw_point(p,blue);
- L.append(p);
- }
-
- if (but == b3) break;
-
- GRAPH<point,int> G;
- TRIANG(L,G);
-
- edge e;
- forall_edges(e,G)
- W.draw_segment(G[source(e)],G[target(e)],violet);
- }
-
- return 0;
- }
-
-